
1 The relationship between blood alcohol content and age. 
1.1  
According to the result of the model, the influence of age to bac is very 
significant (p = 2.9e-05) which means age has a big influence on blood alcohol 
content. To be more specific, each 1 increase in age leads to 0.12996 decrease 
in bac. Adjusted R-squared equals 0.1098, indicating that model accounts for 
10.9% of the variance. F-statistic (p=1.041e-06 < 0.05) is significant so the model 
is not a constant model and there are a relationship between age and bac.  

Residuals vs Fitted: There is an equally spread residuals around a horizontal 
line suggesting the residuals have a liner pattern, so my linear model is 
appropriate to the data. 
Normal Q-Q: Residuals are close to the straight dashed line, which indicates 
that they are standard normally distributed (mean = 0, sd = 1). 
Scale-Location: A slightly non-horizontal line with points spread from across the 
plot is observed, which means the residuals are spread unequally along the 
range of the predictors. So, I assume the data is not very homoscedatic. 
Residuals vs Leverage: There are a few influential points (data 107, 187,246) 
which can not be fitted by the model.  
Above all, some basic assumptions are satisfied, others are not quite satisfied. 
According to the adjusted R-squared, my model has rooms to be improved. 
1.2 
Applying predict function to m1, the predicted blood alcohol content for a 50 
year old driver is 21.76652. 
1.3  
As we can see the Normal Q-Q from Figure 1, the residuals are not a standard 
normal distribution but quite close to. According to Figure 4, residuals are close 
to the straight dashed line with the exception of a few points, which indicates 
that they are nearly standard normally distributed (mean = 0, sd = 1). 
       
2 Driving speeds, night vs. day 
2.1 

I would apply linear models for the reason that ‘bac’ (the dependent variable) is 
continuous. Besides, the result of m1 shows that there could be a linear 
relationship between ‘age’ and ‘bac’, so I think there could be the same case 
for ‘speeds’ and ‘nighttime’. Being allowed to apply linear model should check 
its assumptions, that is, the residuals should be normality, homogeneity of 
variance and independence. By plotting the model diagnostics of the models, I 
confirmed that those assumptions are satisfied. Then, I tried 4 linear models 
from m2_1 to m2_4. According to the anova, the p-value of time of day is 

Figure 1.  Model diagnostics Figure 2. Cook’s distance 

Figure 5. The influence of speed and age Figure 6. The influence of speed 
 and age and nighttime 

Figure 3. Density of residuals of m1 

Figure 7. Boxplot of means 



significant, indicating that the improvement made by adding new predictors 
'nighttime' is not on chance. In m2_3, bac increases by 3.55759 in night, while 
bac decreases by 0.12959 for every unit of age. From m2_1 to m2_3, I found 
that time of day predict the bac over and above the age with much larger 
coefficient than age's. However, speed does not predict bac over and above 
age. Actually, based on the model m2_2, m2_3, speed even would not predict 
bac since the p-value of it is not significant. Among model m1, m2_1~m2_4, 
m2_3 might fit best, considering its adjusted R^2 is the highest (0.1756), which 
means the model accounts for 17.56% of the variance. In m2_4, I check how 
age, nighttime or speed and their interaction predict bac, and it turns out not 
only the interactions are quite small but also the model is not significant which 
means their interactions could not predict the bac. 
Above all, time of day predict the bac over and above the age, while speed 
does not predict bac over and above age. 
2.2  
By plotting the model diagnostics of the models, I confirmed that the 
assumptions of linear models are satisfied. 
Based on the adjusted R-square several models, drivers’ ages plus speeds 
accounts for 8.7% of the variance, and time of day of incidents accounts for 
around 9.5% (17.2%-7.7% = 9.5% ) of the variance. 
2.3 
As we can see in Figure 7, it seems that the average speed in night is slightly 
faster than in day, but the figure have no information about significance of the 
difference. So, I would apply t-test, because it can tell us whether their 
difference is significant. Before the t-test, I check whether the data satisfy the 
assumptions of normal distribution and the homogeneity of their variance by 
applying shapiro and leveneTest. In Shapiro, the W equals 0.98803 which is 
close to 1, meaning speed is normally distributed. While in leveneTest, the F = 
2.2426 and p = 0.1357. The p-value is bigger than 0.05, so the variance is 
homogeneous. Then I apply the t-test, what I get is that the p-value equals 
0.3892 which is not significant, so there are no statistical difference between 
the speed at night and speed at day. 
In conclusion, people don't drive faster at night than during the day. 
3 Fines vs. Warnings 
3.1  

 
As we can see from the Figure 8 and Figure 9, the higher blood alcohol content 
one has, the higher possibility he or she would be fined. Similarly, the faster 
one drive, the higher possibility he or she would get fined. Apart from that, 
elderly people seems to have a lower probability to get a fine. Nevertheless, I 
could not find out how prior offence influences the likelihood of getting a fine 
based on this figure. So, I would look at the statistics values of the model I am 
going to build, and focus more on variables like bac, speed and age. 
Generalized liner models would be established to figure out what variables 
contribute to the likelihood of receive a fine. The reason I choose the 
generalized liner model instead of the liner one is that the dependent variable 
(outcome) is binomial. 
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First, I assume all the variables would contributes to the outcome by 
constructing model m3_0. What I found is that blood alcohol content might 
contributes the most of which p-value is very significant, while speed and age 
could slightly influence the outcome with one star significance.  
After constructing several models, I get table 1 showing the significance of each 
variable and other important statistic values. 

However, there remain some issues in all these models. The model diagnostics 
of them shows that: 1). There may be a slight non-linear pattern to the data. 2). 
Homogeneity of Variance also potentially problematic 3). There are a couple of 
quite influential points in the data which can not be fitted by these models. 
Above all, I consider the m3_2 fit best with highest residual deviance and 
significance. In conclusion, blood alcohol content and speed contributes the 
most. As for the question what has the biggest effect,1-sd increase in speed or 
1-sd increase in bac. The influence of speed in each standard deviation is 
1.452639, which is bigger than bac (1.083934), so speed has larger effect. 
3.2 
To figure out whether people with prior drink driving offences (DR50) are more 
likely to get a fine than those who have non-drink-related offences, I decide to 
compare the distribution of 2 groups people (with and without DR50) getting a 
fine or warning with the hypothesis distribution (people getting a fine or 
warning). 

Chi-square-test can be used to decide whether the two kinds of distribution are 
statistically the same or different. The null hypothesis is that there are no 
difference between the penalty rate in people with prior drink driving offences 
and that in non-drink-related people. It turns out the p-value equals 0.05345, so 
it is not significant, suggesting that the null hypothesis should be kept. 
In conclusion, people with prior drink driving offences (DR50) have statistically 
same possibility to get a fine with those who have non-drink-related offences. 
3.3 
To understand whether prior motoring offences of any kind would influence the 
likelihood of getting a fine, we could establish a generalized linear model 
between them with the former as one of independent variables and the latter 
as dependent variable. If prior driving offences of any kind contributes to the 
dependent variable, the p-value of it should be significant.   
So, I added a new column called motoring_offence, which tags people as with 
or without motoring offence. Then I built a model m33 = glm(outcome ~ 
motoring_offence + age + nighttime +speed + bac, data=DrinkDriving ,family = 
binomial). What I found is that the p-value of variable 'motoring_offence' is not 
significant, meaning that it would not influence the likelihood of getting a fine. 
To sum up, prior motoring offences of any kind would not influence the 
likelihood of receiving a fine. 
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4 Plotting predicted probabilities. 

 
I put the required new data into m3_0 which contains all the variables and what 
I got is Figure 10, with prediction ranging from close to 0 to 0.55. Then I tried 
m3_3 and plot the predictions for each age values. The reason I choose m3_3 
is that it is a better model than m3_0 as we can see from question 2 table1. 
Since in model m3_3, age has a smaller effect on the outcome compared to 
m3_0, it makes sense that various age makes a smaller difference on the 
possibility of getting a fine, ranging from 0.01 to 0.17.  
Both Figure 10 and 11 show a tendency that with the increase of age the 
possibility of getting a fine would decrease. 
 
5 Corrupt cops 

 
At a first glance of the Figure 12, I find that officer AS barely give a fine to people 
over 75 years old, and those who under 50 years would always be fined by him. 
So, I guess there might exist the case that one officer is biased on a driver's 
age.  
To prove that, I made a model for each officer and some important results are 
presented in Table 4. Only officer AS has a significant p-value in terms of age 
which means age would influence his judgement of fining. More importantly, 
the slope of age in model m_as are over twice compared to other officers’ 
models. Another method to prove the hypothesis is combining officers to 3 
groups and comparing the difference between each other by contrast coding. 
From Figure 13, we can see that only variable ‘officerITNPvAS’  is significant, 
indicating group AS are different from group ITNP and group IT has no 
significant difference from group NP. 
As a result, I conclude that officer AS is biased by not giving a fine to older 
people while tends to give a fine to the youngest. 
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